
THE BIT DOME: CREATING AN IMMERSIVE DIGITAL ENVIRONMENT WITH A
KINECT-BASED USER INTERFACE

Zane R. Cochran
Mathematics and Computer Science Department
Berry College
Mount Berry, Georgia 30149
512-576-7243
zane@zanecochran.com

ABSTRACT
This paper presents a unique way to create an inexpensive immersive environment that
implements a non-standard interface using the image-based 3D capabilities of the Xbox Kinect.
This method results in a compelling interaction that engages students in an immersive experience
fostering further exploration into the underlying technology of the installation.

INTRODUCTION

Using state-of-the-art technologies to create interest in computer science and effectively
teach its principles is becoming an increasingly important part of education at several levels of
learning [1]. Because computer science education can be effectively taught through the
principles of exploration and active engagement, the increased use of immersive digital
environments has created a demand for inexpensive and manageable systems in which to deliver
these experiences [1, 6]. Furthermore, these environments are best leveraged when paired with
image-based 3D reconstruction hardware, such as the Xbox Kinect to allow for a user’s body to
naturally interact with their surroundings.

While often times considered synonymous with a traditional understanding of virtual
reality, the primary objective in an immersive digital environment is not to simulate reality, but
rather provide an abstraction of a simulated environment in which the user feels that they can
affect some change on the digital elements around them. With this in mind, we developed a
digital environment, named the Bit Dome, as part of a student-driven physical computing project.

To simplify the construction of the dome structure, the Bit Dome makes use of a number
of readily available and inexpensive materials, making it appropriate for an extended student
project in a physical computing course. Principally, the system relies upon basic construction
materials and minimal hardware including RGB LEDs, an inexpensive microcontroller, an Xbox
Kinect and a computer. With these simple items, we developed an installation that is as visually
stunning as it is functionally impressive.

THE BIT DOME

The Bit Dome is a semi-spherical geodesic dome with 61 RGB lights evenly distributed
throughout the space. At one end of the dome is an Xbox Kinect that allows a user to intuitively
interact with the dome through direct interaction with physical elements inside the space and a
variety of natural body gestures that simplifies the user interface [10].

Hardware Configuration
A number of hardware considerations were made to ensure that the Bit Dome remained

practical and versatile because the Bit Dome was designed to be a low-cost immersive
environment developed by students for a physical computing class. The principle design
directive for the final structure focused on economy, simple construction and scalability [6].

The Physical Bit Dome Structure

The geometry of a geodesic dome is known for its strength, making the dome easily
scalable to large sizes. Its near-spherical shape maximizes capacity while minimizing the amount
of material needed for its construction. While not an implicit requirement of immersive digital
environments, the dome encapsulates its user, generating the illusion of an isolated experience.

In our implementation, a frame-based construction was used because it resulted in a
naturally open display, allowing spectators outside of the environment to observe the natural
interaction between the installation and its user (Figure 1a). A benefit of this design is forgiving
tolerances in the size of its base components because it is constructed from various lengths of
polyvinyl	 chloride	 (PVC) pipe that interconnect at 61 hubs. These hubs allow each pipe to float
to a natural resting position, regardless of small difference in the length of materials (Figure 1b).

Lighting, Audio and Control Hardware

The primary feedback from the Bit Dome is received through patterns of colorful light
emitted from the environment’s 61 RGB lights (Figure 2). While 61 pixels may seem
prohibitively small, a restricted number of outputs simplifies the hardware and software and
makes programming the dome accessible to students. To control each pixel, a Rainbowduino (an
Arduino-based microcontroller) was acquired to translate commands received serially from a
computer into light arrays in a multitude of colors, thus generating a rich user experience [9].

In addition to visual feedback, there are also speakers positioned around its perimeter that
allow for prerecorded messages, music or sound effects to play at set times during the
experience. Trial-and-error observation showed that users were able to more easily navigate the
dome’s various functions when prompted by audible instructions. This also opened up the
opportunity to incorporate music and effects in the software to enrich the immersive experience.

Adding Depth Imaging with an Xbox Kinect

In order to interact with the software and ultimately the lights, an input device that was
capable of tracking a visitor’s location in the dome and body position was critical. The Xbox

	
 a. b.
Figure 1. (a) The open surface of the Bit Dome allows
people outside the structure to observe. (b) A close up
view of this prototype’s free-floating hubs.

	
Figure 2. The Bit Dome is capable of producing millions
of vibrant visualizations. A user (bottom) interfaces with
the dome by standing opposite an Xbox Kinect (top).

Kinect was chosen because it is adept at capturing the desired user input and interaction is
relatively easy with widely available software libraries [3, 2]. Incorporating it as an input device
also encourages greater involvement in the experience and makes interacting with the dome
more enriching because users must use their entire body to control the environment [3, 5].

Software Components

There are two main software components that are necessary to make the Bit Dome
function seamlessly. The first is a modified version of the firmware that was specifically
developed for the Rainbowduino. The second is the main software that runs locally on a
computer that interfaces with both the Kinect and the Rainbowduino.

The Rainbowduino firmware was optimized to allow the hardware to be controlled
externally over a USB connection from a Java program. This firmware processes 24-bit 8x8
RGB frames at over 30 frames per second [4]. Because the control software that runs on the
connected computer was developed in Processing (a language and programming environment
based on Java), this was the best choice for controlling the Bit Dome’s LEDs.

The main control software was developed in Processing because of the language’s
emphasis on interactive visualizations and its vast community of support. Students, artists and
researchers often use Processing to create a broad variety of image-based interactions [8]. While
this installation could be programmed in many languages, Processing enables rapid development
of programs because of its simple programming environment and accessible libraries that make
interfacing with both the Kinect and Rainbowduino simple.

Low-Level Functions

Because the Rainbowduino firmware is normally used for controlling an 8x8 grid of
pixels, it was necessary to consider how lights are ordered in software as a continuous array of
64 lights, versus how they are physically configured as 61 lights arranged in six concentric
circles. To accomplish this, a mapping was created that allowed the software to easily reference a
particular light given its physical location in the dome (Figure 3). Also, the relationship between
lights positioned above, below or adjacent to any given light was also established. The position,

	
Figure 3. A mapping of virtual lights (numbers in
circles) versus physical lights (adjacent numbers).
Lights in yellow and red represent interactive menu
lights, with red denoting the current selection.

	
 a. b.
Figure 4. (a) Static body tracking allows users to directly
interact with fixed physical objects (lights) in the
environment from a preset position. (b) Dynamic tracking
allows the user to freely roam the space and influence a
variety of behaviors in the software.

neighbors and color attributes of each light were packaged in the software as an individual object
that could easily be referenced by a currently running program.

To interface between Processing and the Kinect, we employed the Open Kinect software
library. It enables body recognition and the tracking of 12 points of physical articulation that can
be easily accessed and used. These reference points allow the software to quickly reconstruct a
skeleton of the user’s body in a virtual space and empowers student developers the opportunity
to quickly develop interactive programs.

The Bit Dome relies upon two different methods of tracking a user’s body to determine
key body gestures: calibrated and relative. The calibrated method depends upon determining if a
user is pointing at a specific light in the dome from a preset location, whereas the relative method
determines the body’s relation between its various parts (e.g. distance between hands and torso)
or location inside the dome [7]. Because the relationship between a user’s hand and the physical
location of a light in the dome will vary based upon the user’s height, arm length and posture, it
is necessary to perform a one-time calibration for each unique user.

Calibrated tracking exploits the relationship between the location of a user’s hand while
standing in a predetermined spot in the dome and the placement of several key lights within the
environment (Figure 4a). Once this relationship is established, it becomes intuitive to use natural
gestures, e.g. pointing, to navigate through the system’s many available programs.

Relative body tracking gives the user freedom to move about the dome and affect broad
changes in the dome, however, because of the absence of an absolute reference point, users are
unable to interact directly with physical objects in the dome. However, this type of tracking
allows users a greater variety of interpreted gestures that can affect simulations or even games as
they jump, lean, duck, or move their limbs to control an interaction (Figure 4b).

High-Level Functions

The main control software functions in three finite states: dome calibration, menu
selection and program execution. By design, when the software begins, it enters a calibration
state. After calibration, the software enters the menu selection state where the user points at five
designated lights to navigate to one of the programs that can be run in the dome (Figure 3). Upon
selection of a program, the dome enters the program execution state that continues to run until
the user makes a preset gesture to exit the program and return back to menu selection.

To perform the calibration, the dome audibly instructs the user to stand on a specially
marked spot on the floor and sequentially point at the five lights directly in front them. By saving
the coordinates of the user’s hand during this sequence, it is possible for the program to later

	
Figure 5. System calibration using a five-point calibration process to orient the user’s body in the software program.

determine if the user is pointing at a menu option when it is running in its menu selection state.
With the calibration finished, the user can naturally point at these same lights to control the
functionality of the dome (Figure 5).

After calibration, the Bit Dome’s software enters the menu selection state. To simplify
user interactions in the environment, menus and executable programs are represented by five
lights opposite of where the user stands. These lights represent an unfixed set of commands that
can be reassigned as the user traverses a tree of menu options. For example, a user could select a
games menu by pointing at the fourth menu light. As soon as the software detects that the user is
pointing at a menu item, it audibly announces the light’s current function and changes the light’s
color to signify that it has been engaged. At this point, the software loads a submenu where the
same five lights (now different colors to signify the functional reassignment) represent four
games that can be played and one option to return to the main menu.

After a program is selected through the menu, control of the Bit Dome’s lights is handed
over to the program for manipulation. Programs have several ways in which they can change the
state of the lights in the dome. Individual lights can be addressed and assigned colors, lights can
be turned off completely, and can even be programmed to tween between two given colors over
the span of several animation frames. To terminate a program, a user makes the escape gesture
and the state of the software is returned to its previous location in the menu hierarchy.

SAMPLE INTERACTIONS

To help illustrate the wide variety of simple and engaging activities that can be created
for the Bit Dome, three of the 16 programs developed for it are summarized here. These use
simple principles, making creation of programs accessible to beginner and intermediate level
students who have a basic understanding of programming languages and data structures.

Dome Painting

After creating a one-to-one correspondence between a user and the dome during the
calibration state, it is possible to algorithmically determine the relationship between a user’s
hand and many lights in the dome. After establishing this relationship, users point at any light in
the dome and cause it to light up (Figure 6a). This gives the user the illusion that they have the
power to “paint” the dome with light.

Space Invaders

This program revitalizes an old favorite arcade game and reimagines it for use in an
immersive environment. The user’s ship is represented by three lights along the bottom edge of

	
 a. b.
Figure 6. (a) A simple scene made using the Dome
Painting program. (b) The intensity of lights affected by
tracking a user’s body throughout the environment.

	
Figure 7. A virtual representation of Space Invaders as it is
displayed in LEDs in the Bit Dome.

the dome. Aliens, represented by green pixels descend down the sides of the dome by randomly
selecting neighboring pixels that are below it (Figure 7). The ship maneuvers along the dome’s
perimeter when the user mimics turning a steering wheel left or right, determined by comparing
the relative heights of the left hand to the right. The objective of the game is to prevent the aliens
from reaching the bottommost level of the dome by positioning the ship underneath an alien and
firing a missile—an activity actuated by pulling both hands close to the body.

Colors in Motion

Colors in Motion is a game that challenges users to freely explore the dome as music is
played. The colors of the dome are directly affected by the intensity of movement and the total
distance traveled by the user. When the user moves slowly throughout the space the dome shifts
its colors toward the blue/violet portion of the spectrum. Rapid or intense movement, however,
causes the dome to display vibrant hues of yellow, orange and red (Figure 6b).

CONCLUSION

Throughout this work, we have presented an implementation of an immersive digital
environment that demonstrates a variety of skills learned during a typical physical computing
course. It has further created opportunities for additional research and development through its
open-ended functionality and continues to capture the attention of those who experience it.

ACKNOWLEDGMENTS

Our thanks to Dr. Nadeem Abdul Hamid for his many insights regarding this work.

REFERENCES
[1] Apostolellis, P., Daradoumis, T., Audience interactivity as leverage for effective learning in
gaming environments for dome theaters, Proceedings of the 5th European conference on
technology enhanced learning conference on Sustaining TEL, 451-456, 2010.
[2] Borenstein, G., Making Things See, Sebastopol, CA: O’Reilly Media, 2012.
[3] Cervantes, J.C., Vela, F.L.G., Rodriguez, P.P., Natural interaction techniques using Kinect,
Proceedings of the 13th International Conference on Interacción Persona-Ordenador, Article
14, 2 pages, 2012.
[4] code.google.com/p/rainbowduino-v3-streaming-firmware, retrieved December 10, 2012.
[5] Francese, R., Passero, I., Tortora, G., Wiimote and Kinect: gestural user interfaces add a
natural third dimension to HCI, Proceedings of the International Working Conference on
Advanced Visual Interfaces, 116-123, 2012.
[6] Hole, J., Schull, J., Inexpensive immersive environments, Proceedings of the 2nd
International Conference on Immersive Telecommunications, Article 16, 5 pages, 2009.
[7] Polacek, O., Klima, M., Sporka, A.J., Zak, P., Hradis, M., Zemcik, P., Prochazka, V., A
comparative study on distant free-hand pointing, Proceedings of the 10th European conference
on Interactive TV and video, 139-142, 2012.
[8] Processing.org, retrieved February 12, 2013.
[9] Seeedstudio.com, retrieved February 12, 2013.
[10] Villaroman, N., Rowe, D., Swan, B., Teaching natural user interaction using OpenNI and
the Microsoft Kinect sensor, Proceedings of the 2011 conference on Information technology
education, 227-232, 2011.

